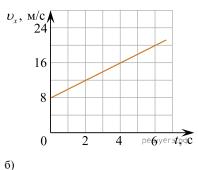
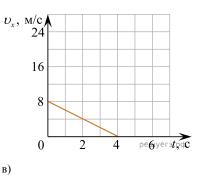
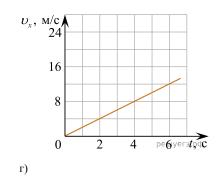
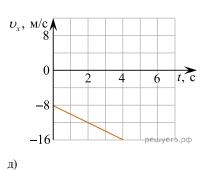
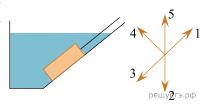

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1,4 ± 0,2) Н записывайте следующим образом: 1,40,2.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

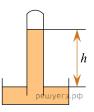

- 1. Единицей измерения частоты колебаний в СИ является:
 - 1) 1 m
- 2) 1 кг
- 3) 1 Πa
- 4) 1 Дж
- 5) 1 Γιι
- **2.** Зависимость проекции скорости v_x материальной точки, движущейся вдоль оси Ox, от времени t имеет вид: $v_x = A + Bt$, где $A=6,0\,{
 m M/c},\,B=4,0\,{
 m M/c^2}.$ В момент времени $t=2,5\,{
 m c}$ модуль скорости υ материальной точки равен:


 - 1) 19 m/c 2) 16 m/c 3) 15 m/c 4) 10 m/c

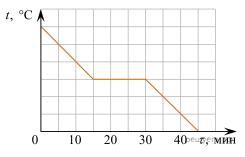

- **3.** Проекция скорости движения тела v_x на ось Ox зависит от времени t согласно закону $v_x = A + Bt$, где A = -8 м/с, B = 2 м/ с². Этой зависимости соответствует график (см. рис.), обозначенный буквой:



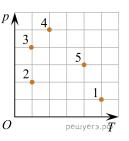
1) a


2) б 3) B **4)** г **5)** д

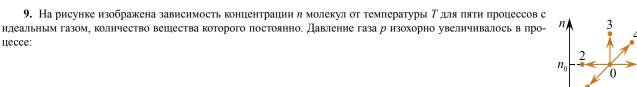
- **4.** Абсолютное удлинение Δl_1 первой пружины в два раза больше абсолютного удлинения Δl_2 второй пружины. Если потенциальные энергии упругой деформации этих пружин равны $(E_{\Pi 1} = E_{\Pi 2})$, то отношение жесткости второй пружины к жесткости первой пружины $\frac{k_2}{k_1}$ равно:
 - 1) 1,0
- 2) \sqrt{2}
- 3) 1,7
- 4) 2,0
- 5) 4,0
- 5. На дно водоёма с помощью троса равномерно опускают каменную плиту (см. рис.). Направление нормальной составляющей силы реакции грунта, действующей на плиту, показано стрелкой, обозначенной цифрой:


- 1) 1 2) 2
- 3)3

6. Запаянную с одного конца трубку наполнили соляным раствором ($\rho=1,2\cdot 10^3~\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$), а затем погрузили открытым концом в широкий сосуд с соляным раствором (см.рис.). Если высота столба соляного раствора h=8,50 м, то атмосферное давление p равно:


- 1) 98,0 κΠa
- 2) 99,0 κΠa
- 3) 100 κΠa
- 4) 101 κΠa
- 5) 102 κΠa

7. В момент времени $\tau_0 = 0$ мин жидкое вещество начали охлаждать при постоянном давлении, ежесекундно отнимая у вещества одно и то же количество теплоты. На рисунке приведён график зависимости температуры t вещества от времени τ . Две трети массы вещества закристаллизовалась к моменту времени τ_1 , равному:


- 1) 10 мин
- 2) 15 мин
- 3) 20 мин
- 4) 25 мин
- 40 мин

8. На p-T -диаграмме изображены различные состояния одного моля идеального газа. Состояние, соответствующее наибольшему давлению р газа, обозначено цифрой:

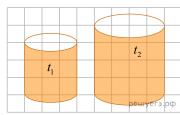
- 1) 1 2) 2

5)5

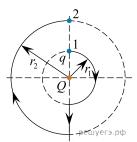
- 1) 0-1 2) 0-2 3) 0-3 4) 0-4
- 5)0-5

10. Физической величиной, измеряемой в фарадах, является:

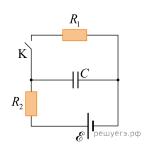
- 1) сила Ампера
- 2) потенциал
- 3) электроёмкость
- 4) сила Лоренца
- 5) сила тока

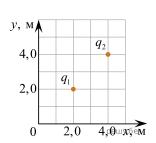

11. В момент начала отсчёта времени $t_0 = 0$ с два тела начали двигаться из одной точки вдоль оси Ox. Если зависимости проекций скоростей движения тел от времени имеют вид: $v_{1x}(t) = A + Bt$, где A = 12 м/с, B = 1,2 м/с² и $v_{2x}(t) = C + Dt$, где C = -8 м/с, $D = 2,0 \text{ м/c}^2$, то тела встретятся через промежуток времени Δt , равный ... **c**.

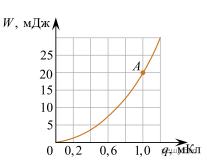
12. К бруску массой m = 0,50 кг, находящемуся на гладкой горизонтальной поверхности, прикреплена невесомая пружина жесткостью k = 20 H/м. Свободный конец пружины тянут в горизонтальном направлении так, что длина пружины остается постоянной, а модуль ускорения бруска a = 2,4 м/с 2 . Если длина пружины в недеформированном состоянии $l_0 = 12$ см, то ее длина l при движении равна ... см.


13. Однородная льдина $\left(\rho_1 = 900 \; \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}\right)$ в форме прямоугольного параллелепипеда толщиной h=16 см плавает в воде $\left({
ho _2} = 1000 \,\, rac{{{
m K}\Gamma }}{{{{
m M}^3}}}
ight)$. На льдину положили камень $\left({
ho _3} = 2300 \,\, rac{{{
m K}\Gamma }}{{{{
m M}^3}}}
ight)$ массой m = 9,2 кг. Если камень погрузился в воду на половину своего объёма, а льдина погрузилась в воду полностью, то площадь S основания льдины равна ... дм².

пессе:


- **14.** Два тела массами $m_1 = 2{,}00$ кг и $m_2 = 1{,}50$ кг, модули скоростей которых одинаковые ($\upsilon_1 = \upsilon_2$), движутся по гладкой горизонтальной поверхности во взаимно перпендикулярных направлениях. Если после столкновения тела движутся как единое целое со скоростью, модуль которой $\upsilon = 10$ м/с, то количество теплоты Q, выделившееся при столкновении, равно ... Дж.
- 15. В сосуде вместимостью $V = 9.8 \text{ м}^3$ находится идеальный одноатомный газ под давлением p = 200 кПа. Если средняя квадратичная скорость движения молекул газа равна $< v_{\text{KB}} > = 700 \frac{\text{M}}{c}$, то масса газа m равна ... $\kappa \Gamma$.
- **16.** Два однородных цилиндра (см. рис.), изготовленные из одинакового материала, привели в контакт. Если начальная температура первого цилиндра $t_1 = 6$ °C, а второго $t_2 = 97$ °C, то при отсутствии теплообмена с окружающей средой установившаяся температура t цилиндров равна ... °C.


- 17. Температура нагревателя идеального теплового двигателя на $\Delta t = 300^{\circ}\mathrm{C}$ больше температуры холодильника. Если температура термический коэффициент полезного действия двигателя $\eta = 40,0\%$, то температура t нагревателя равна ... °C.
- **18.** Если работа выхода электрона с поверхности вольфрама $A_{\text{вых}} = 4,5$ эВ составляет $n = \frac{1}{5}$ часть от энергии падающего фотона, то максимальная кинетическая энергия E_k^{max} фотоэлектрона равна ... эВ.
- **19.** На рисунке изображены концентрические окружности радиусами r_1 и r_2 , в центре которых находится неподвижный точечный заряд Q=32 нКл. Точечный заряд q=4,5 нКл перемещали из точки 1 в точку 2 по траектории, показанной на рисунке сплошной жирной линией. Если радиусы окружностей $r_1=3,5$ см и $r_2=5,9$ см, то работа, совершённая электростатическим полем заряда Q, равна ... мкДж.


- **20.** Тонкое проволочное кольцо радиусом r = 3.0 см и массой m = 98.6 мг, изготовленное из проводника сопротивлением R = 81 мОм, находится в неоднородном магнитном поле, проекция индукции которого на ось Ox имеет вид $B_x = kx$, где k = 2.0 Тл/м, x координата. В направлении оси Ox кольцу ударом сообщили скорость, модуль которой $v_0 = 3.0$ м/с. Если плоскость кольца во время движения была перпендикулярна оси Ox, то до остановки кольцо прошло расстояние s, равное ... **см**.
- **21.** К источнику переменного тока, напряжение на клеммах которого изменяется по гармоническому закону, подключена электрическая плитка, потребляющая мощность P = 560 Вт. Если действующее значение напряжения на плитке $U_{\rm д} = 72$ В, то амплитудное значение силы тока I_0 в сети равно ... **A**.
- **22.** Электрическая цепь состоит из источника постоянного тока с ЭДС $\varepsilon=300$ В, двух резисторов сопротивлениями $R_1=100$ Ом, $R_2=200$ Ом и конденсатора ёмкостью C=10 мкФ (см. рис.). В начальный момент времени ключ К был замкнут и в цепи протекал постоянный ток. Если внутренним сопротивлением источника тока пренебречь, то после размыкания ключа К на резисторе R_2 выделится количество теплоты Q, равное ... мДж

23. Электростатическое поле в вакууме создано двумя точечными зарядами $q_1 = 24$ нКл и $q_2 = -32$ нКл (см. рис.), лежащими в координатной плоскости xOy. Модуль напряжённости E результирующего электростатического поля в начале координат равен ... $\frac{B}{M}$.

24. График зависимости энергии электростатического поля W конденсатора от его заряда q представлен на рисунке. Точке A на графике соответствует напряжение U на конденсаторе, равное ... В.

25. Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 А, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.

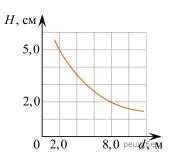

26. Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal E=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \text{ Om.}$$

В резисторе R_6 выделяется тепловая мощность $P_6=90{,}0$ Вт. Если внутреннее сопротивление источника тока $r=4{,}00$ Ом, то ЭДС $\mathcal E$ источника тока равна ... В.


28. Электрон, модуль скорости которого $\upsilon = 1,0\cdot 10^6 \ \frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_\Pi = 6,4\cdot 10^{-15} \ {\rm H}$, то модуль индукции B магнитного поля равен ... мТл.

29. В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1.0\cdot 10^4 \, \frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мк Φ .

30

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

